The Small Multiplication Table through the Centuries in Europe*

Stephan Weiss

Nowadays the small multiplication table up to $9^{*} 9$ or $10 * 10$ only serves as an educational tool. In former times with less schooling and therefore less practical knowledge, the table was also used as an aid for multiplication.

This article will show some tables in their various forms over centuries and at the same time will identify other aspects of their appearance such as language, numerals, and the technology of printing.

Due to the different historical developments in the New World and in the Old World, the scope of the shown examples is restricted to Europe.

Although the complete small multiplication table includes 100 partial products from $0^{*} 0$ to $9 * 9$, the products with 0 were always skipped and those with 1 often because of their simple results, which can be memorized easily.

In Medieval tables with Roman numerals, we find 9 as well as 10 for the upper limit of factors. Later writers adopted these two limits for the small multiplication table, although the factor 10 in Arabic numerals is actually not a single digit but a compound number.

In a small multiplication table, both product factors cover the range from 1 or 2 , to 9 or 10, independent of one another. Therefore, the arrangement in the form of a square is obvious. One of the two factors is written on the upper side and the other one on the left side of a square. Where row and column meet the product can be found. Figure 1 shows an early table from end of $10^{\text {th }}$ or begin $11^{\text {th }}$ century, probably the Upper Rhine region. The table is hand written using Roman numerals and is one of those rare items with artistic design. Not only did the writer weave the colored border lines, he also marked the diagonals with small flowers.

Up to the early $13^{\text {th }}$ century religious books, histories, legal or teaching texts including geometry and arithmetic, were written in monastic scriptoria (writing rooms or offices) and in most cases in Latin, the language of scientists.

Due to the commutative law $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$, the multiplication table can be shortened, covering only the products $2 * 2 \ldots 2 * 9,3 * 3 \ldots 3^{*} 9,4^{*} 4 \ldots 4^{*} 9$, up to $9^{*} 9$ or 10 .

FIGURE 1. Hand Written Square Table with Roman Numerals, about 1000

In Figure 2 we see the first part of another form of a multiplication array, the list. This is a shortened list. The first line reads 1 semel unus unus est et unus digitus (" 1 one times one is one and one unit") and continues with $1 * 2=2,1 * 3$ $=3$, and so on up to $9 * 9$. The last line, not displayed here, says 9 novies novem LXXXI octo articuli et II digiti (nine times nine 81 eight tens and 2 (!) units). Obviously writing digits or multiplication was not easy during those times.

The table in Figure 2 was written about 1040. To ease searching the appropriate line, the table is marked on the left side with an apex (plural apices). These use an early and artificial form of Arabic numerals, which were initially introduced to Europe through Spain about this time.

FIGURE 2: First Lines of a Shortened List with Apices from about 1040

FIGURE 3. Hand Written List Array, $12^{\text {th }}$ Century

The arrangement in Figure 3, in a manuscript from the $12^{\text {th }}$ century, is also a shortened list with a two-dimensional arrangement. From top down, the small squares read:

Semel I I (one times 1 1),
Bis II IIII (two times 24),
Bis III VI (two times 3 6),
Ter III VIIII (three times 3 9),
and so on. Since the arrangement has no highlighted entries like others, the user is not directed to the result, he has to read or count the squares to obtain the product.

The author of one of the oldest printed books on mercantile arithmetic from about $1471 / 1482$ gives calculating examples for merchants in Germany. To address these people he wrote in the German language instead of Latin. The multiplication table he added is arranged in a shortened list and covers two pages. Figure 4 shows the left half. Now we find our modern Indo-Arabic numerals although the digits 4,5 , and 7 are in an early shape. The way this book has been printed is worth being mentioned. It is called a block book, because instead of using movable letters they cut one or two pages mirrorinverted as a whole into a wooden block and then print it.

FIGURE 4. An Early Printed List (left half) in a Book on Mercantile Arithmetic from 1471/82

Sometimes lists are arranged in specific forms as shown in Figure 5 without and in Figure 6 with written arithmetic operation support.

FIGURE 5. Multiplication List in a Book from 1640

FIGURE 6. Multiplication List in a Book from 1700

The multiplication table up to $9^{*} 9$ or $10 * 10$ is part of almost all books on arithmetic. The authors insist on learning the table and use rhymed short sentences like (in free translation) "study the multiplication table and you will become familiar with all kind of calculation" [1] or "who intends to become a good calculator has to learn the multiplication table" [2] and similar. Furthermore, they sometimes give a detailed explanation on how to use the table for those readers who have not memorized but use the table as a tool for multiplication.

If one shortens the quadratic arrangement, one half is missing and the shape changes to a triangular multiplication array. Those arrangements appear in various forms. In Figure 7, the author only uses one half of a square, the diagonal line with square numbers is explicitly marked with Quadrati numeri. In Figure 8, the left side and diagonal line serve as two entries, in Figure 9 only one highlighted entry to the table is available.

FIGURE 7. Triangular Table in a Book from 1561

FIGURE 8. Triangular Table in a Book from 1527

FIGURE 9. Triangular Table in a Book from 1678

Except the used digits - Roman, apices, Hindu-Arabic - there is no development in the shape of arrangement during centuries. All forms of the small multiplication table - square, triangular, and list, complete or shortened - are in use at the same time.

From the late $18^{\text {th }}$ century, the multiplication table was used as an educational tool, as well a toy for children. As an example, the square table in Figure 10 with vertically movable entry "window" is part of a toy named Tables Intuitives Reumont from France, early $20^{\text {th }}$ century.

Finally I introduce the unknown owner of a trigonometric table, published in 1639, who wrote his own shortened multiplication list on the endsheets of his book (see Figure 11).

FIGURE 10. Square Table with Movable Entry, System Reumont

FIGURE 11. Hand Written Shortened List, about Middle of the $17^{\text {th }}$ Century

I do not know what this table was used for, maybe for learning, maybe as an aid for multiplication. He captioned his table with Tabula Pythagora, because at that time people erroneously regarded the Greek mathematician Pythagoras to be the inventor of tables of that kind. At the end of his table he did not forget to add the word FINIS (the end).

References

* Also published in Journal of the Oughtred Society, 22:2, Fall 2013.

1. Widmann, Johann, Behend und hüpsch Rechnung uff allen

Kauffmanschafften, Pfortzheim 1508.
2. Lammerding, Johann, Die selbst-lehrende Rechen-Schule, Münster 1718.

Figures

Sources and abbreviations for the owners:
StBBa: Staatsbibliothek Bamberg, Germany.
BStBMu: Bayerische Staatsbibliothek, Munich, Germany.
Figure 1: Anicius Manlius Severinus / Isidorus <Hispalensis> / Hieronymus, Sophronius Eusebius: Boethius, De institutione arithmetica [et al]-StBBa Msc.Class.6, [S.l.], fol. 38v.
Figure 2: Johannes Scotus Eriugena - Dionysius Areopagita. BstBMu Clm 14137, fol. 113r (Img 00228).
Figure 3: Bedae libri de arte metrica fragmentum... BStBMu Clm 14689, fol 50r (Img. 00102).
Figure 4: Ulrich(?) Wagner, Regula von dre ist drey dinck die du setzt, (about 1471/1482). StBBa Inc.typ.Ic.I.44, fol. 1v and 14r.
Figure 5: Adriaan Metius, Arithmetica et Geometria, 1640.
Figure 6: William Leybourn, Arithmetick, Vulgar, Decimal, Instrumental, Algebraical: In four parts, London 1700.
Figure 7: Rainer Gemma Frisius, Arithmeticae Practicae Methodus Facilis,1561. Figure 8: Petrus Apian, Eyn underweysung aller Kauffman β-Rechnung, Ingolstadt 1527.
Figure 9: Tobias Beutel, Neu aufgelegte Arithmetica oder sehr nützliche RechenKunst... Leipzig 1678.
Figures 10, 11: from the author's collection.
The scans in Figures 1 to 4 are reproduced with kind permission of the named owners.

Feb. 2013
http://www.mechrech.info

