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In an earlier paper1 on designing steam engines using 
the Soho slide rule, I briefly discussed the calculation 
of an expansion steam engine. In the following this 
topic shall be taken up again with the aim to highlight 
its computational treatment, especially the use of the 
natural logarithm. The two textbooks by Farey2 (1827) 
and by Dixon3 (1875), serve as boundaries on the time 
period being considered. 
 
These books appeared after the first and before the last 
quarter of the 19th century, with an interval of almost 
50 years. Both authors deal in detail with the 
calculation of steam engines and explain the use of a 
slide rule for this purpose. 
 
A short explanation of the function of an expansion 
steam engine should make clear what role the 
hyperbolic or natural logarithm plays. 
 
With several inventions and improvements, the 
engineer James Watt (1736 - 1819) significantly 
influenced the development of steam engines. 
Towards the end of the 18th century, he described, 
among other things, the expansion steam engine in 
patent GB17821321 from 1782.4 In the expansion 
steam engine, the piston is not pressurized with the full 
steam pressure over the entire working stroke, but only 
initially over a predetermined distance. Then the inlet 
valve closes and the steam expands further with 
steadily decreasing pressure. Figure 15 shows the 
pressure curve in a working stroke assuming that the 
inlet valve closes after the first quarter of the piston 
stroke. 
 
In the first quarter of the stroke from position 0 to 
position 1, the piston is pressurized with the full and 
constant steam pressure, normalized to p1 = 1 in the 
diagram.  
 
In this section the work of the piston is calculated with 
pressure p1 * piston area F * travel of the piston x = 1 
or pressure p1 * volume from 0 to 1. This work 
corresponds to the rectangular area of the diagram 
within positions 0 and 1. 
 
After closing the inlet valve, the volume of steam 
increases as the pressure decreases. With the 
assumption that the steam behaves like an ideal gas 
according to the law of Boyle and Mariotte, pressure p 

* volume V = a constant, and because the area of the 
piston does not change, one can also write p ~ 1/x with 
x being the travel of the piston. In position 1 the 
pressure is still p1, then in position 2 it decreases to ½ 
for double volume, in position 3 for triple volume to 
⅓, and in position 4 finally to ¼. 
 

 
FIGURE 1. The pressure curve in the cylinder 

during expansion 
 
Due to the continuously decreasing pressure from 
position 1, the work of the piston can no longer be 
calculated directly with the product pressure p * piston 
area F * travel of the piston x. What is needed is an 
assumed mean pressure, pme, during the expansion, 
which gives the desired result of the calculation. In 
other words, the area of the assumed rectangle from 
position 1 to 4 with the height pme must be equal to 
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the crosshatched area under the pressure curve shown 
in Figure 1. 
 
A solution results from the fact that the pressure 
gradient p ~ 1/x represents a hyperbola, here in a 
rectangular coordinate system. Then the area under the 
curve from x = 1 to x = t corresponds to the natural 
logarithm ln(t). See Figure 2.6 With ln(4) = 1.386 one 
obtains the mean pressure pme = ln(4)/3 = 0.462 and 
the work of the piston over the whole stroke is (1*p1 
+ 3*pme)* piston area F = 2.386*F. 
 
Often the piston area F = 1 is also set, because then it 
is easier to compare pressures and work under 
different conditions. 
 
If the piston is subjected to full pressure for a fraction 
other than a quarter of its stroke, other numerical 
values will result. 
 

 
 

FIGURE 2. The hyperbola f(x) = 1/x 
 
It should be noted that Watt does not follow this 
approach. He determined the mean pressure by 
summing up 15 ordinates as stripes of equal widths 
and with their respective pressures below the 
hyperbola. 
 
On the basis of the calculated results, Watt points out 
the advantage of the expansion steam engine. If the full 
steam pressure is applied to the piston only over a 
quarter of its stroke and not over the entire length of 
its stroke, the coal consumption for steam generation 
is reduced to a quarter, but the work of the piston only 
to slightly more than half. 
 
With smaller ratios of full pressure to expansion the 
advantage becomes even greater, but then other 
technical problems arise. 
 
One restriction must be taken into account. The 
calculation does not exactly give the average pressure, 

because steam is not an ideal gas, because the 
temperature of the cylinder does not remain constant, 
and above all because opening and closing of the 
valves influence the pressure curve and the remaining 
steam in the pipe from the valve to the cylinder also 
plays a role. For this purpose, further calculations or 
correction factors based on experience with previously 
built machines must be applied.  
 
To calculate an expansion steam engine, the engineer 
and patent attorney John Farey Jr. (1791 - 1851), used 
the natural logarithm. In the past, the logarithm to the 
base e was also called the hyperbolic logarithm 
because it quantifies areas under the hyperbola, as 
shown above.  
 
Farey takes text passages from the Ecyclopedia 
Britannica into his work. Towards the end of the 18th 
century, not all engineers had a table of the natural 
logarithm: 
 
“As few professional engineers are 
possessed of a table of hyperbolic 
logarithms, while tables of common 
logarithms are, or should be, in the 
hands of every person who is much 
engaged in mechanical calculations, 
the following method may be 
practised.7ʺ  

 
The “following method” referred to above is the 
conversion of log(x) to ln(x) by using the multplier 
2.30258 thus:  ln(x) = 2.30258...*log(x). It is used in 
the next calculation example. 
 
The force on the piston at maximum pressure is 6333 
lbs. The stroke is 6 ft long, and after 1.5 ft the steam 
supply is shut off. This results in 6 /1.5 = 4; log(4) = 
0.602; ln(4) = log(4) * 2.3026 = 1.386; 1 + 1.386 = 
2.386; 6333 lbs * 2.386 = 15110 lbs “Accumulated 
Pressure”8. The result does not have a unit for work 
commonly used in technical fields, because the unit of 
length corresponds to the piston stroke without 
expansion. 
 
As a working aid, Farey provides a table9 of the so-
called hyperbolic logarithms from 1 to 10 in 
increments of 0.05, 10 to 100 in increments of 5, plus 
1000 and 10,000.  
 
Farey explains a variety of different calculations that 
may occur during the design of a steam engine. He 
uses a slide rule of the Soho1 type and the version he 
has improved. A scale of the natural logarithms on the 
slide rule is not mentioned anywhere in his work. 
 
 



 
 

FIGURE 3. Conversion of Logarithms by Benoît 
 
In a mathematical or technical textbook that makes use 
of logarithms, their definition, or at least an 
explanation of them, should not be missing. Farey 
shows that the logarithm of a number is the exponent 
in a power of 10 that produces exactly that number. At 
the same time, he uses the historical definition,  
 

“LOGARITHMS are a series of artificial 
numbers, adapted in a particular 
manner to a series of real 
numbers,...”10  
 

This view had already been used by John Napier (1550 
-1617), who calculated the first usable logarithm table 
and published it in 1614. He used it as an explanation 
besides the term logarithm.11 
 
In the course of the 19th century, the natural logarithm 
is either taken from such tables or calculated from the 
common logarithm. The engineer Martin Benoît 
shows in his explanations of the slide rule from the 
middle of the 19th century12 how to proceed in this 
case. On p. 436 he gives a simple sketch on how to set 
the slide rule13, as was common at that time. See 
Figure 3. 
 
Because the accuracy of the slide rule is limited to a 
few digits, Benoît refers to the tables by Callet.14 
Among other tables, they contain the 1 to 100 times 
conversion factors from base ten logarithms to natural 
and vice versa, given to 23 decimal places.  
 
A scale on the slide-rule divided according natural 
logarithms is also not mentioned by Benoît. 
 
In the time between Farey and Dixon little changes in 
this regard. It is noteworth that during this interval, in 
1859, Amédée Mannheim, an officer in the French 
Army, and a mathematician,  introduced a new slide 
rule design which uses the scales A,B and C,D, but in 
a different arrangement compared to James Watt’s 
Soho slide rule, which was the most common type of 
slide rule in use at that time.  The Mannheim slide rule 
may not have been the first slide rule to have a cursor, 
but it was the first to require it.  Some versions of the 
Mannheim slide rule also have trigonometric scales, 
and a scale of logarithms to base 10. The natural 
logarithm plays almost no role. 
 

The subject of calculating an expansion steam engine 
with the aid of a slide rule adapted for technical 
purposes is taken up again in a textbook3 in 1875. The 
engineer Thomas Dixon, already mentioned above, 
focuses in his treatise on the novel design of his slide 
rule.15 He describes the design and arrangement of the 
scales on it and explains its use with examples from 
practical mathematics, technical mechanics, and also 
in the design of steam engines. 
 
First, Dixon discusses the special nature of logarithms. 
Like Farey before him, he draws on the historical 
comparison of an arithmetical sequence with 
geometric sequences and derives from this, 
 

"And logarithms being artificial 
numbers so contrived that the sum of 
the Logs. of any two numbers = the 
Logarithm of the Product of those 
numbers..."16  

 

He continues with the conversion of divisions to 
subtractions and so on. It is astonishing how long 
historical interpretations survive even in mathematics. 
Only later does  he addresse the logarithms of Briggs 
with their assignments: log(1)=0; log(10)=1; 
log(100)=2 and so on. 
 
After this introduction he starts talking about his slide 
rule. The dimensions of the slide rule are 19 1/2" x 2 
1/4" x 5/8''  (49.5 x 5.7 x 1.95 cm).17 In the preface 
Dixon mentions the company Aston and Mander in 
England as the manufacturer. See Figures 4 and 5. 
 
The front face of the slide rule is labeled “No. 1”, and 
has the following scales (from top to bottom): 
 
CUBE ROOT  1...10  = √𝑁 
(s) N  1...10...100...1000 
A  like N 
(s) B  and C like N 
SQ.RT  D  1...10...31.62   = √𝑁 
 
The scales marked with (s) in the above list are on 2 
slides which are only visible and effective on the front 
side. 
 
 



 
 

Figure 4. The Front of the Dixon Slide Rule 
 

 
 

Figure 5. The Back of the Dixon Slide Rule 
 
The back, marked “No. 2”, carries from top to bottom 
the scales: 
 
COM.LOGS  0...1,0   = log(NUMBERS) 
NUMBERS  1...10 
HYP.LOGS  0...2,3   = ln(NUMBERS) 
COSINES  90°...0°    = cos(), related to the scale 
NUMBERS below 

SINES          0°...90°  = sin(), same. 
NUMBERS  0...1 
 
The lower edge is labeled “No. 3” and has rulers 
divided in ¾ inch, 1 inch, and 1.5 inch increments. The 
upper edge is labeled “No. 4” and has rulers divided in 
¼ inch and ½ inch increments. 
  



With the additional scales and their arrangement, 
Dixon's scale layout differs significantly from the 
other slide rules offered at that time. This is especially 
true for the scales of natural and hyperbolic logarithms. 
Contemporary descriptions explicitly emphasize the 
new composition. For example, the collection 
catalogue of the South Kensington Museum from 1876 
writes about the slide rule 
 

"Slide Rule, of boxwood, arranged by 
Mr. Dixon, Lowmoor Ironworks. Aston & 
Mander. In addition to the lines of 
the ordinary slide rule this 
instrument contains: Lines of common 
and hyperbolic logs and numbers. Lines 
of sines, cosines, and numbers. Lines 
of cubes and roots, direct."18  

 

Dixon compares the design of his instrument with the 
existing ones and highlights the extended application 
possibilities: 
 

"...and as the arrangement now 
proposed and hereafter described has 
its lines A,B,C,D similarly marked to 
the Soho and Routledge, so the 
operations (concerning those lines 
only) will be alike for all three; 
while the lines on the proposed 
instrument, extra to A,B,C,D, have a 
special application to purposes of 
calculations hereafter explained, for 
which the other two instruments are 
not adapted."19  

 

Some years later, a technology magazine evaluates 
Dixon's slide rule in an exhibition: 
 

"Dixon shows his 'triple radius double 
slide rule' with which very complex 
operations may be readily 
performed."20 

 
When looking through Dixon's sample calculations, 
three groups of tasks stand out for which his slide rule 
should be suitable. These are: 
1. the treatment of powers with fractional exponents, 
as they occur in mechanics, 
2. calculations composed of multiplications, divisions 
and roots with several numerical values, 
3. calculations in connection with the hyperbolic 
logarithm without intermediate calculations and 
without the use of a logarithm table. This is especially 
true for the design of expansion steam engines. For this 
he gives five example calculations.21 

The first example is as follows: 
The maximum pressure is 30 lbs. per sq.inch and the 
stroke is 60 inches. After 20 inches, the steam supply 
is stopped. What is the average pressure over the entire 
stroke? 
1. 60/20, "Or, by Slide Rule, 60 on A - 20 on N or B 
gives 3 on A for the number of times the steam is 
expanded." At some points in the text, Dixon specifies 
the slide rule setting. 
2. On the back of the slide rule, the value 1.098 on the 
scale Hyp.Log is read off for 3 on the scale Num.  
3. The normalized work over the entire stroke is 
1+1.098 = 2.098, thus the average pressure over the 
entire stroke is 2.098/3=0.7 lbs per sq.in. 
4. The mean pressure over the entire stroke is 
0.7*30=21 lbs. per sq.in. 
 
The scale Hyp.Log is used like a graphical logarithm 
table on the slide rule, more is not possible because of 
its placement on the back of the slide rule, which has 
no slides. 
 
As far as is known, Dixon was the first to place a scale 
of natural logarithms on a slide rule. This is why his 
work does not contain a tabular list of natural 
logarithms, but instead a separate chapter on 
hyperbolic logarithms as well as numerous examples 
of reading this scale.  
 
The reason for adding the natural logarithms scale is 
clearly its use for the calculation of expansion steam 
engines.  
 
Although no longer necessary with this new scale, 
Dixon also demonstrates the usual calculation of the 
natural logarithm:  
 

“Common Log. on A + 2.3 on N or B = Hyp. Log. on 
A.”22  
 

Besides the Soho slide rule as a whole, the scale of the 
natural logarithms is another example of how a slide 
rule can be adapted to the requirements of mechanical 
engineering. 
 
In the post-Dixon era, a scale of the natural logarithms 
is very rarely applied to slide rules. With the beginning 
of the 20th century it appears in a modified version as 
log-log or LL scales. But that is another story. 

 
Notes (all hyperlinks tested and working as of 21 Jan 2021) 
 
1.  Weiss, Stephan, The Design of a Steam Engine by Means of the Soho Slide Rule, Journal of the Oughtred Society 

28:2, Fall 2019. 



2.  Farey, John, A Treatise on the Steam Engine, Historical, Practical, and Descriptive, 1827, Longman, Rees, 
Orme, Brown, and Green. London, 
https://books.google.com/books/about/A_Treatise_on_the_Steam_Engine.html?id=bfvNAAAAMAAJ 

3.  Dixon, Thomas, 1875, Treatise on the Arrangement, Application, and Use of Slide Rules, Bradford. 2ed. with 
supplement 1881, 
https://www.google.com/books/edition/Treatise_on_the_Arrangement_Application_/1jUDAAAAQAAJ?hl=en&
kptab=editions&gbpv=1 

4.  Original Title A.D. 1782, No 1321. Specification of James Watt. – Steam Engines. 

5.  The picture is taken from Matschoss, Conrad, Geschichte der Dampfmaschine. Berlin, 1901, p. 73 and amended 
by the author. An identical picture, with markings, is used in the above mentioned patent for James Watt. 

6.  The sketch on top is taken from Wikipedia, search term Natural Logarithm (last visit June 6th 2020). 

7.  Farey, 1827, p. 343. Taken from Encyclopedia Britannica, 3rd ed., Vol. 17, (1797), search term Steam Engine 

8.  Farey, 1827, p. 343. 

9.  Farey, 1827, p. 345. With the same step interval as Bourne, John, 1851 and later, A Treatise on the Steam Engine. 
London. 

10.  Farey, 1827, p. 533. 

11.  Napier, John, Mirifici logarithmorum canonis constructio, 1619, Edinburgh, Positio Prima. Translated into 
English and annotated by Ian Bruce.  
http://www.17centurymaths.com/contents/napiercontents.html   

12.  Benoît, P(hilippe) M(artin) N(arcisse), La Règle à Calcul Expliquée, 1853, Paris. 

13.  Weiss, Stephan, 2017, The Methodology of Teaching a Logarithmic Slide Rule in Historical Sequence , Journal 
of the Oughtred Society 26:2, Fall 2017. 

14.  Callet, François, Tables Portatives de Logarithmes, 1795 and later, Paris, 
https://www.google.com/books/edition/Tables_portatives_de_logarithmes_contena/tY9lAAAAcAAJ?hl=en&gb
pv=0 

15.  Wyman, Thomas, 1996, The Thomas Dixon Engineer‘s Slide Rule, Journal of the Oughtred Society, 5:2, S. 68.  
Pictures in International Slide Rule Museum: Aston And Mander Makers - Dixon Style Slide Rule.  
URL https://www.sliderulemuseum.com/Rarities.htm (last visit June 6th 2020). 
Pictures in Science Museum Group: T.Dixon's slide rule.  
URL . https://collection.sciencemuseumgroup.org.uk/objects/co60507/t-dixons-slide-rule-boxwood-19-1-2-x-2-
1-4-x-slide-rule-dixon. (last visit May 7th 2020) 

16.  Dixon, 1875, p. 8. 

17.  Information about the object from Science Museum Group. 

18.  Catalogue of the Special Loan Collection of Scientific Apparatus at the South Kensington Museum 1876, 3rd 
ed., London 1877, Section 1. – Arithmetic, 
https://www.google.com/books/edition/Catalogue_of_the_Special_Loan_Collection/Vu8NyAEACAAJ?hl=en&
gbpv=1 

19.  Dixon, 1875, p. 13. 

20.  Van Nostrand’s Engineering Magazine , Vol. XXXIII, July-Dec 1885, p. 517 upper left. 

21.  Dixon, 1875, p. 135. 

22.  Dixon, 1875, p. 41. 




