Reconstruction and Background of Gaspar Schott's Tabula Sexagenaria (1661)

Sexagesimals belong to a place-value system with sixty as the base. It had been invented by the Sumerians in the 2000s BC, was then transmitted to the Babylonians, to the Islamic World [10, 11, 14], from there to the Western World and is still in use for measuring time and angles. Before Schott's table is introduced, a short overwiew of sexagesimals in post-medieval times in the Western World may help to understand his work and intentions. The work with sexagesimal numbers was brought in connection to and named with astronomy. Varel (1533-1599) [27] writes in his easy to understand educational book about that subject:
"What is astronomic calculation? It's a unique and special certain arithmetic, or principle of calculation, used by astronomers and cosmographers for calculating locus of points, times, movements in the sky and similar things." (Quid est Logistice Astronomica? Est Singvaris \& peculiaris quædam Arithmetica , seu ratio computandi, qua Astronomi \& Cosmographi in computatione locorum, temporum, motuum coelestium, \& similium rerum utuntur.)

In addition sexagesimals were in use to represent fractions in general.
The base 60 involves to bear in mind sixty different numerals. In the Western World however decimal numbers are used to replace sexagesimal digits. For example $6^{\circ} 18^{\prime} 43^{\prime \prime}$ equals $6+18 / 60+43 / 3600$ degrees. This notation is not a pure place-value system, but a derived one, in which the figures within the whole number are distinguished by signs used as place-identifiers. With such a notation there is no need to fill an empty place with zero.
For place-identifiers (lat. denominatio, -onis) the authors used similar names but different symbols or indices, placed over or near the right side of the figures [22 p. 234]. ${ }^{1}$ Some of used signs are listed in fig. 1.
Although this system has advantages - 60 can be divided by $2,3,4,5,6,10,12$, $15,20,30$ without remainder - there is a severe disadvantage. The smallest multiplication table holds 3600 products ($0 . .59$) $\times(0 . .59$), in consideration of commutative law ${ }^{2}$ at least about 1800 products. Without such a table one has to

[^0]perform a multiplication followed by at least one division by 60 . That is why multiplication tables were essential and in many historical manuscripts and books a sexagesimal multiplication table is added.

Pwr of 60	Identifier	$\operatorname{sign}^{\text {1) }}$	$\operatorname{sign}^{2)}$	sign $^{3)}$
\ldots				
60^{3}	sexagenae tertiae ("third sixties")	$3 æ$	$3 æ$	$/ / / æ$
60^{2}	sexagenae secundae ("second sixties")	$2 æ$	$2 æ$	$/ / æ$
60^{1}	sexagenae primae ("first sixties")	$1 æ$	$1 æ$	$/ æ$
60^{0}	gradus, dies, integrum ("degree, day, whole number")	\circ	0	\circ
60^{-1}	scrupula prima ("first parts")	' or I	1 a	$/ \mathrm{a}$
60^{-2}	scrupula secunda ("second parts")	" or II	2 a	$/ /$
60^{-3}	scrupula tertia ("third parts")	"' or III	3 a	$/ / /$
\ldots				

Fig. 1: Place-identifiers in sexagesimal numbers
${ }^{1)}$ as used by Schott [21] or Strauch [24] and others
${ }^{2)}$ as used by Peucer [15] and Varel [27]
${ }^{3)}$ as used by Theodoricus [26]
Over centuries we have to distinguish two types of multiplication tables in the Western World: the complete table and the abridged triangular sexagesimal table.

The complete Table

A complete table holds all products within the range of base for both factors. Such a table is very large and therefore must be split into several parts and printed on successive pages. The table is named Tabula Sexagenaria, Tabula Sexagesimorum, Canon Sexagenarum or Canon Sexagenarum et Scrupulorum Sexagesimorum, seldom Tabula Proportionalis. Here a selection of authors, who give a complete table:

Fine	$1532[7]$	$(1 \times 1) . .(60 \times 60)$	
Schoner, J.	$1536[20]$	$(1 \times 1) . .(60 \times 60)$	
Fine	$1555[6]$	$(1 \times 1) . .(60 \times 60)$	In earlier editions of Fine's Arith- metica he adds a description of the abridged table (see next section) instead of the complete table.
Theodoricus	$1564[26]$	$(1 \times 1) . .(60 \times 60)$	
Calvisius	$1629[4]$	$(1 \times 2) . .(59 \times 60)$	
Strauch	$1662[24]$	$(1 \times 1) . .(59 \times 60)$	

Argoli	$1677[2]$	$(1 \times 1) . .(60 \times 180)$	
Jeake	$1696[9]$	$(1 \times 1) . .(60 \times 60)$	Printed on a single folded sheet of paper, a rare exception.
Grueneberg	$1700[8]$	$(1 \times 2) . .(59 \times 60)$	
Lorenz	$1800[13]$	$(1 \times 2) . .(59 \times 59)$	

I skipped sexagesimal tables adapted for special purposes like Bernoulli 1779 [3] or Taylor 1780 [25] for proportions.
Factors and products are given without any place-identifier. The products are always written with two adjacent places.
In relation to sexagesimal multiplication tables Samuel Reyher (1635-1714) should be mentioned. He adapted Napier's calculating rods for use with sexagesimal numbers [19 German, 18 Latin, 29].

The abridged Table

Some authors don't give a complete but an abridged sexagesimal tabe that is smaller in size and therefore needs only a folded page to be printed. Furthermore its arrangement allows an easier overview. The used allocation of products is understood better in comparison with a complete table. A full table with its entries $1 . .60$ on a horizontal side and $1 . .60$ on a vertical side contains the four parts a), b), c), d), (see sketch below):

1	a) $(1 . .30) \times$	b) $(1 . .30) \times$
\ldots	$(1 . .30)$	$(31 . .60)$
30		
31	c) $(31 . .60) \times$	d) $(31 . .60) \times$
\ldots	$(1 . .30)$	$(31 . .60)$
60		$31 \ldots 60$
	$1 \ldots 30$	31

Parts b) and c) are equal due to commutative law and can be replaced by one of them. In the abridged table part d) is reduced to the triangle A B C, parts a) and b) are contracted to trapezoid D E F G.

Lazarus Schoner uses the poetical title
Tabula, sive Canon Sexagesimorum, qui multiplicatione, divisione, lateris quadrati investigatione, caelum, terras, maria mensurat. ("Table or Canon of sixties that measures the sky, the earth, the sea by multiplication, division and extracting square root").
He derives the shape of the table from cutting through a triangular table at entry 30 on the base (see sketch below) and moving the rotated triangular part on top. Varel [27] uses the same explanation. Triangular tables avoid commutative products and have been in use as a multiplication aid for decimal numbers.

Among other authors an abridged table is given by

Schoner, J.	$1536[20]$	$(1 \times 1) . .(60 \times 60)$	
Reinhold	$1571[17]$	$(1 \times 1) . .(60 \times 60)$	Before section Logistice Scrupulorum Astronomicorum.
Schoner, L.	$1586[16]$	$(1 \times 1) . .(59 \times 59)$	In section Lazari Schoneri De Logistica Sexagenaria liber.
Alsted	$1630[1]$	$(1 \times 1) . .(60 \times 60)$	In Arithmeticae Pars II, cap. Xi \& XII
Schott	$1661[21]$	$(1 \times 1) . .(60 \times 60)$	
Lansberg	$1663[12]$	$(1 \times 1) . .(60 \times 60)$	Appended to section tabulae motuum coelestium.
Wallis	$1693[28]$	$(1 \times 1) . .(60 \times 60)$ In cap. VII de partibus sexagesimalibus. A very rare arrangement: the triangular table is cut and reproduced in 10 individual parts.	

At the end of his Tabulae Arithmeticae Johannes Schoner adds two different abridged tables of equal shape, one configured for sexagesimal numbers (tabula proportionum ad LX. minuta) and the other one, very rare, with sexagesimal results of three places for astronomical calculations (tabula proportionum ad XXIIII horas. pro motu horario \&c.planetarum).
Gaspar (Caspar) Schott (1608-1666), a German Jesuit and scientist, specialized in the fields of mathematics and physics, published in his Cursus Mathematicus (1661), section De Arithmetica Astronomica an abridged

Tabula Sexagenaria vel Sexagesimorum Scrupulorum ("Table of sixties or of sixtieth parts").
The reconstruction of Schott's table and his own associated rules as well as instructions for use are reproduced in the supplement to this article.

Some authors, like Reinhold [17] or Fine in earlier versions of his Arithmetica [6], only mention or describe the abridged table without reproducing. Up to now I couldn't find the inventor of this special arrangement.

Calculating with Place-Identifiers

Sexagesimal numbers are an arrangement of digits $1 . .59$ connected with their ordering signs that act as place-identifiers. In addition or subtraction the numbers are treated by corresponding places. For multiplication and division instead both parts, digit and sign, must undergo the same arithmetical operation. With other words and in an example 12 sexagenae secundae divided by 4 scrupula tertia equals 12 divided by 4 plus sexagenae secundae divided by scrupula tertia. ${ }^{3}$
To solve this problem the authors teach different procedures. For help in defining the new sign or order to be processed, they offer either rather clumsy rules or graphical aids. The rules in Theodoricus' Canon Sexagenarum [30] and those Schott teaches are translated into English to give an impression to the reader. In his Compendium Theodoricus [26] summarizes his rules in a modern looking decision tree (see fig. 2 a and my translation fig. 2 b).
Within their rules the authors add or subtract place-identifiers as if they were exponents, but with restrictions: in both ranges, sexagenae and scrupula, they only have positive values. Therefore the range for a new place-identifier must be specified by comparing the magnitudes of the two identifiers in calculation. Moreover the order gradus resp. integrum (60°) doesn't represent zero, instead it is regarded to be of extraordinary state and treated individually. Those procedures make the rules sometimes hard to decode. In contrast Wallis is an exception. He works with negative indices:
"IV' multiplied with III' ${ }^{\prime}$ gives XII'. That means 4 Sexagena multiplied with 3 secunda minuta give 12 minuta prima because of $+1-2=-1$."
(IV' in III" facit XII'. Hoc est, 4 Sexagena in 3 secunda minuta, faciunt 12 minuta prima: propter $+1-2=-1$. [28, cap. VII, p. 25]).
Wallis' approach is new but doesn't surprise. Not before the end of $17^{\text {th }} \mathbf{c}$. he was one of the first who generalized the usage of exponents, negative and fractional ones included.

[^1]
TABVLA OSTENDENS

DENOMINATIONEM SPECIEI, ex duifione prouenientis.

Fig. 2a: Theodoricus' summary to define orders in division
in all divisions,
we divide either

Fig. 2b: Theodoricus' decision tree translated

In a graphical aid called Tabula denominationum ("table of denominations", fig. 3) Johannes Schoner combines lists of names for indices to generate sentences that read
"<name> (multiplied) by <name> will give <name> with <name>".
Tabula denominationum.

Fig. 3: A table to define place-identifiers in multiplication, given by Schoner [20]

The result covers two places in case its numerical value exceeds 59. Other authors add small tables with two entries only for signs (fig. 4).

Fig. 4: Tables to define place-identifiers given by Grueneberg [8]

In these tables the two given signs are selected at their borders. In the common field of column and row the new valid sign can be read.

References

1 J.H. Alsted. Encyclopaedia septem tomis distincta... 2 vols 1630, 4 vols 1649 (digitalized copy 1630 Google Books).

2 Andrea Argoli. Ephemerides exactissimae caelestium motuum. 1677 (digitalized copy e-rara.ch)

3 John Bernoulli. A sexcentenary table exhibiting, at sight, the result of any proportion... 1779

4 Sethus Calvisius. Opus Chronologicum. 1629 (digitalized copy Staatsbibliothek Berlin)

5 Florian Cajori. A History of Mathematical Notations. 1928, 1993
6 Oronce Fine. Arithmetica practica. 1536, 1544, 1555
(digitalized copy of ed. 1544 Google Books), (digitalized copies of ed. 1544, 1555 Bayerische Staatsbibliothek Muenchen).

7 Oronce Fine. Protomathesis. 1532 (digitalized copy Google Books).

8 Christian Grueneberg. Pandora Mathematica Tabularum Universae Mathesis nempe Sinuum, Tangentium et Logarithmorum. 1700 (digitalized copy GDZ)

9 Samuel Jeake. Logistikelogia, or Arithmetick surveighed and reviewed. 1696 (digitalized copy EEBO).

10 David A. King. On medieval Islamic multiplication tables. Historia Mathematica 1,3 (1974).

11 D.A. King, J. Samsò \& B.R. Goldstein. Astronomical Handbooks and tables from the Islamic World (750-1900): an Interim Report. Suhayl 2

12 Philipp Lansberg. Opera omnia. 1663 (digitalized copy e-rara.ch).

13 Johann Friedrich Lorenz. Grundri β der reinen und angewandten Mathematik. 1800 (digitalized copy GDZ)

14 Paul Luckey: Die Rechenkunst bei Gamsid b. Mas'ud a-Kasi. Abhandlungen für die Kunde des Morgenlandes XXXI,1. 1951.

15 Kaspar Peucer. Logistice astronomica Hexacontadon. 1556 (digitalzed copy Bayerische Staatsbibliothek Muenchen).

16 Petrus Ramus and Lazarus Schoner (Schöner). Arithmeticae Libri duo... 1586, 1592 and 1599.
(digitalized copies Staats- und Universitaetsbibliothek Dresden).
17 Erasmus Reinhold. Prutenicae tabulae coelestium motuum. 1571 (digitalized copy Staats- und Universitaetsbibliothek Dresden or e-rara).

18 Samuel Reyher. Bacilli Sexagenales i.e. Descriptio Logisticae Sexagenariae per Bacillos exercendae,... 1688

18 Samuel Reyher. Kurtze Beschreibung der Sechzig-theiligen Rechnung. 1688 (digitalized copy GDZ)

20 Johannes Schoner (Schöner). Tabulae Astronomicae. 1536 (digitalized copy Bayerische Staatsbibliothek Muenchen).

21 Gaspar Schott. Cursus Mathematicus. 1661 and 1674 (digitalized copy 1674 Google Books or http://www.uni-mannheim.de/mateo/camenaref/schott.html).

22 D. E. Smith. History of Mathematics, vol. II. New York 1958.
23 Michael Stifel. Arithmetica Integra. 1544 (digitalized copy Staats- und Universitaetsbibliothek Dresden).

24 Aegidius Strauch (II). Tabulae per universam mathesin summopere necessariae. 1662
(digitalized copy Google Books).
25 Michael Taylor. A sexagesimal Table, exhibiting at sight, the result of any proportion... 1780
(digitalized copy Goole Books)
26 Sebastian Theodoricus Breve, perspicuum, et facile compendium logisticae astronomiae. 1563
(digitalized copy Bayerische Staatsbibliothek Muenchen).
27 Edo Hilderich von Varel. Logistice Astronomica. 1568 (digitalized copy Universitaets- und Landesbibliothek Sachsen-Anhalt).

28 Johannis Wallis. De algebra tractatus... operum mathematicorum volumen alterum. 1693
(digitalized copy Goole Books)
29 Stephan Weiss. Die Rechenstäbe von Neper, ihre Varianten und Nachfolger. 2007 http://www.mechrech.info/publikat/Neper85Au.pdf

30 Stephan Weiss. Reconstruction of Sebastian Theodoricus: Canon Sexagenarum (1564) (Dec. 2011)
http://www.mechrech.info/publikat/TheodoricusCanonRecon.pdf

Jan. 2012
http://www.mechrech.info

Supplement: Translation and Reconstruction

The following text is an excerpt of Gaspar Schott's Cursus Mathematicus ${ }^{4}$ in so far as it concerns multiplication or division with sexagesimal numbers in conjunction with use of his Tabula Sexagenaria. My translation tries to follow the original text closely to give a feeling of its distinctive flow without loss of readability. Comments may help to clarify hardly unintelligible phrases. Comparisons of Schott's sometimes sketchy rules with modern rules for calculating with exponents turned out to be helpful in detecting their meaning.
A copy of the original Latin text is added for comparison purposes and because some of the historical letters and abbreviations are difficult to be expressed in electronic text.
The table itself has been calculated and drawn with the graphical programming environment Processing ${ }^{5}$ and is appended on the last page. Printed on paper of size ISO A3 (297×420 Millimeters) the table will get approximately its original size. The purpose of an additional number 60 in the upper right corner of the table is unclear, it has been omitted in the reconstruction.

[^2]Gaspar Schott. Cursus mathematicus.
Liber II. Arithmetica Practica. Pars II. Caput II.

Articulus V.

De CMultaplicatione Afironomica.

INtricatiffima eft praxis multiplicandi numeros aftronomicos fexagenariam proportionemfervantes, præfertim quando diverfæ fpecies per diverfas 1 pecies multiplicandæ funt,nempegradus per minuta,fecunda,\&c: aut fexagenæ primæ per fecundas,tertias, \&c. Conabor tamen quàm ordinatiffimè procedere. Igitur
Prımò.Commodioris operationis gratiâ feribe majorem numerum (qui nimirum explurib. fpecieb.compofitus eft) fuprà pro Multiplicando. minorem verò, feupauciorum fpecierum, infra pro Multiplicante, ita tamen utultima ad dexterămultiplicantis feecies fubjiciatur ultimæMultiplicandi, five ambx ultimx fint ejufdem feeciei, five diver $f x$, ut in exemplis infra apparet, Quòd fi uterquenumerus $æ q$; multas fpecies continet, perinde eft quifupernè, \& qui infernè ponatur. Secundo. Ducta lineâ infra numeros collocatos, àdexteraincipe, \& duc fingulas Multiplicantis fpecies, infingulas Multiplicandi, more confueto in multiplicatione ordinaria, productum, fifexagenarium numerum excedit, divide per 60, refiduum colloca fubMultiplicante, Quotum verò productum ex divifione adjice fpeciei antecedenti,utim iifdem exemplisfactum vides.
Tertro. Peractâ totâ multiplicatione, nota ac diftingueritè in fpecies numeros ex multiplicatione emergentes, tali pacto: finotæ utriufq; numer1,multiplicandi videlicet \& multiplicantis, funt ejufdé peciei, hoc eft,fi uterq; habeat notas tantün tales, $0,1,11,111, \& c$.eas adde inter fe, \&producto fuprafcribe:fi diverfas, ut o\&i, 0 \& II, \&c. ité minuta \& fexagenas; fubtrahe mınoré ex majore\& refiduum feribe pro nota fupra productŭ.

Section V.

About Astronomical Multiplication.

Most complicated is the process of multiplying astronomic numbers while keeping the sexagesimal proportions ${ }^{6}$, especially when different orders ${ }^{7}$ are to be multiplied by different orders, be it gradus by minuta, secunda and so on or sexagenae primae by secundae, tertiae and so on. Nevertheless I'll try to go on most systematically. Therefore

First. For a more convenient operation write the bigger number (which may be composed by several orders) on top as the multiplicand, the smaller or that (number) with less orders, beneath as multiplier, so that the very right order of the multiplier is set under the very (right order) of the multiplicand, may it be that both are of the same order or of a different (order), as it occurs in the examples below. And if each number holds many orders, it's the same way how to set down above and below.

Second. Draw a line below the collected numbers, start at the right side and multiply each order of the multiplier with each of the multiplicand, as usual in normal multiplication. If a product exceeds 60 , divide it by 60 , set the remainder below the multiplier, set the quotient from this division to the preceding order, ${ }^{8}$ like you see it done in these examples.

Third. When the whole multiplication is done, note and distinguish in the right way the orders of the numbers, that come from multiplication, which is done this way: if the signs of both numbers, of course of multiplicand and multiplier, have the same order, which means, if both bear the signs 0 , I, II, III, and so on, add them and write them over the product: when they are different, like $0 \& I, 0$ \& II, and so on, also minutae and sexagenae; subtract the smaller from the bigger one ${ }^{9}$ and write the result as sign over the product.

[^3]Exemplum. Sint multiplicanda $4^{\circ} \cdot 11^{\prime} \cdot 42^{\prime \prime} \cdot 50^{\circ}$. per 38^{n}. Colloca numeros ut vides, \&duc 38 in SO_{2} | producentur 1960,hæc | 4°. | 13^{\prime}. | $42^{\prime \prime}$ | 10°. |
| :--- | :--- | :--- | :--- | :--- | divide per 60 , producentur 31, \& remanebunt 40 , fcribe ergo 40 infra multiplicantem, \& 31 pone infra antece- $2.40^{\prime \prime} \cdot 41^{\prime \prime} .7^{\mathrm{mm}} \cdot 40^{\circ}$. dentem fpeciem, adjicienda fummæex multiplicatione fequenti producendę, ut vides factum in exemplo. It erum duc 38 in 42 , producentur 1596 , hxc divifa per $(0$, dant $26, \&$ remanent 36 , fcribe 36 infra 42 , \& infra 31 , fed 26 pone infra 13. Iterum duc 28 in 13 , productumque 494 divide per 10 ; habebis 8, \& remanebunt 14 , hac fcribe infra ${ }_{13}$, illa infra 4. Tandem duc 38 in 42 producentur 1 1 2 ,qua divifa per 60 , dant $2, \& 32$: fcribe 32 infra 4 , \& 2 fcribe in locoanteriori. His peractis, collige fummas infra primam lineana pofitas in fummam totalem, modo dictoArtic. 3 . \& habebis fummam infra fecundam linearn, notatam ut vides juxta tertium pracedens praceptú, quoniam fecunda ducta in tertia, dant quinta: in fecunda, quarta: in prima, tertia, in integra, fecunda, \& hæc divifa per 60, dant prima.

Simili prorfus modo procedendum eft in omnibusaliis exemplis, fivemotus per motum multiplicentur, five tempora per tempora: \& etiamfi Multiplicans contineat plures fpecies. Exempla tuiple tibi ftatue.

Example ${ }^{10}$. Has to be multiplied $4^{\circ} .13^{\prime} .42^{\prime \prime} .50^{\prime \prime}$. by $38^{\prime \prime}$. Compose the numbers as you see, multiply 38 by 50 , comes 1960^{11}, this divide by 60 , comes 31 , remaining 40 , so write 40^{12} below the multiplier and set 31 below the preceding order, whereby the sums produced by following multiplication will be increased, as you see in the example. Again multiply 38 and 42, comes 1596, divide it by 60, makes 26 and 36 remaining, write 36 below 42 and below 31, but set 26 below 13. And again multiply 28^{13} and 13 , comes 494, divide by 60 , you will get 8 , remaining 14 , this (14) write below 13 , that (8) below 4 . At last multiply 38 and 4 , comes 152 , which divided by 60 , makes 2 , and 32 : write 32 below 4 , and 2 in a preceding place. When this is done, collect the sums below the first line and put them together in a total sum in the way given in section 3^{14}. And you will get the sum below the second line, marked as you see in accordance to the third preceding rule, which means secunda multiplied by tertia gives quinta: by secunda (gives) quarta: by prima (gives) tertia, by integra (gives) secunda, and these divided by 60 give prima. ${ }^{15}$
The same procedure has to be done in all other examples, in case there has to be multiplied motion by motion or times by times ${ }^{16}$ and even if the multiplicand may have several orders. ${ }^{17}$ Give examples to yourself.

[^4]
Annotatio.

De Tabula Sexagenaria, promultiplicatione, divifione, innumeris aftronomicts.

QUoniam res laboris ac tedii plena eft produclum ex mulitplicatione, quoties fexagenarikm numerum fuperat , dividere per 60 , Ȩquotum inventum ad anteriorem (peciem reiicere, retento olùm refiduo; ordinarunt eArtifices, magno ingenso, Tabulam quam Canonem Sexagenarium appellant, /eu fexage/imorü fcrupulorsm, ex qua /iatim E̛ uno quafi intustu colligitur quid ex qualibet multiplicatione producatur ad diverfas/pectes/peitans; quam propterea hucloco infercre volui. Conftat ea trianguli $A B C$, Es trapezij DEFG formá.

Ufus Tabula bic eft. Si tam multoplicandus, quàms multuplicator, tricenario major fir, quaratur major in trianguli latere dextro $B C$, minor verò in fuperiori tranlverjali AB : Siverò alteruter tricenario minor fit, quaratur major in trapezvilaterefinzfro DE,minor in tranfverfali obliquo DF. Cum bis duobus numeris in utrolibet ca/u,perge adarcolam corum commenem, Einventesin ea productum fub duabus ßecrebus, antecedente, ©f. confequente: ©f/int/timus quidē numerus dicta a cola fignificat quotum ad 乃peciem antecedentem reijciend $\bar{a}_{,}$dextimus verò refísuum ex multiplicatione. Ouăporrò notam bor refiduum babere debeat, difies ex tertio pracepto paulo ante pofito. Exemplum. Sint utantea, multiplicanda 50 per 38^{4} :quare 5 O in trianguls latere dextro $B C, \mathcal{C H}_{3} 8$ in latere fuperiore $A B$;inveniesin areola fen quadratulo communi, $3 \mathrm{I}, 40$; qua/fgnificant in cafu pofito $3 \mathrm{I}^{\text {111 }}$, * 40°. Item fint multiplicanda $1 \frac{1}{3}$ per $38^{\prime \prime}$: quare 3^{9} in trapezil latere finiftro $D E, 13$ vero in diagonali $D F$; invenies in areola feu quadrangulo concurfus 8,14 ; qua ignificant in pofito cafu $8^{\prime \prime}, \mathcal{E} 1{ }_{4}^{\prime \prime}$.
Hec autem Tabula fervit ectam prodivifione, wt ex dicendis eArticulo jequenti patebit. Examen multsplicationis fit per divifionem, de qua nunc agemus.

Annotation.

About the sexagesimal table for multiplication, division with astronomical numbers.

Since it means trouble and dislike to divide by 60 a product from a multiplication whenever the number exceeds 60 and to diminish the found quotient to the preceding order to get only the remainder, ${ }^{18}$ Artists constructed with much ingenuity a table, which they call Canon Sexagenarium vel Scrupulorum Sexagesimorum (Table of sixties or of sixtieth parts), from which at once and almost at a glance can be brought together, what from a multiplication with different orders is expected to be created; and that is why I intended to insert it (the table) here. The shape consists of a triangle ABC and a trapez DEFG.

Follows usage of the table. If both multiplicand and multiplier are bigger than 30 , the bigger one has to be searched on the right side BC of the triangle, the smaller in the horizontal side AB above. If one of them is smaller than 30 , the bigger one has to be searched in the left side DE of the trapez, the smaller one in the diagonal line DF. With these two numbers whatever go to their small shared place and here you will find the product with two orders (figures), the preceding and the consequential one: and the left number in this named small place marks the quotient, reduced to the preceding order, the right one the remainder of multiplication. ${ }^{19}$ What a sign the remainder has to have you will get from the third rule placed short before. ${ }^{20}$

Example. As before, $50^{\prime \prime \prime}$ are to be multiplied by 38 ": search for 50 on the left side BC of the triangle, and 38 in the upper side AB , you will find in this small place or shared small quare 31,40 ; which (numbers) in this case mean $31^{\prime \prime \prime \prime}$ and 40^{\vee}. In the same way are to be multiplied 13 ' and 38 ": search for 38 on the left side DE of the trapez, 13 in the diagonal DF; you will find in the small space or shared small square 8,14 ; which (numbers) in this case mean 8 " and 14 "'.

But this table is useful for division too, as will be explained in the following article. The study of multiplication leads to division, which we now cover.

[^5]
Articulus VI.

De Divifione Afronomica.

DIvifio numerorum aftronomicorumper aftronomicos, rarum habet ufum, \& per Tabulam Sexagenariam difficulter peragitur, fine Tabula difficillimè. Qui ea deftituitur, refolvat tamDividendum,quàmDiviforem, per continuá multiplicationem Sexagenariam, in ultimas feecies quas continent,\&rum divifionem more vulgato inftituat, quotumque inventum rurfus per continuam divilionem fexagenariam more vulgato in fuas ípecies colligar.
Exemplum. Sint dividenda Sexagefim \mathfrak{x} fecundxis, Sexagefimx primx 5 , gradus 9 , Minuta 12, Secunda 17, Tertia16.perSexagefimasprimas42,
 Secunda\&6.Reductotūdividēdumad Tertia, pet continuảmultiplicationem per $60, \&$ Гertia. 12508388236 habebisTertiari 50838 Secunda. 9156946 \$236. Similiter reduc Prima, 1366 totum Diviforē adSe-Gradus 22. Minuta 46, cunda, per eandem continuàm multiplicationé per 60, \& habebis Secunda 9156946 . Divide jam Tertia perSecunda, divifione vulgari, \& habebis pro Quoto Prima 1366, utipatebit ex Regulis paulò pò!t adfignandis. Hxc rurfus divide divifione vulgariper 60 , \& produces Gradus 22 , Minuta 4^{6}, uti exiifdem Regulis patebit.

Section VI.

Abstract

About Astronomical Division. The division of astronomic numbers by astronomic (numbers) is seldomly used and with the Sexagesimal Table difficult to perform, without the table most difficult. Who is left alone without it (the table), enlarges dividend and divisor with repeated sexagesimal multiplication to the farest orders they hold and then performs a division the normal way, and going back that way puts together their orders with normal sexagesimal divisions. Example. Should be divided Sexagesimae secundae 15^{21}, Sexagesimae primae 5, gradus 9, Minuta 12, Secunda 17, Tertia 16 by Sexagesimae primae 42, Gradus 23, Minuta 35, Secunda 46. Reduce the whole dividend to Tertia with continuous multiplication by 60, and you will get 12508388236 Tertia. In the same way reduce the whole divisor to Secunda with the same continuous multiplication by 60, and you will get Secunda 9156946 . Divide Tertia by Secunda with normal division and you will get a quotient of 1366 Prima which will be specified with the near below following rules. Going back divide these (Prima) with usual division by 60 and you produce Gradus 22 , Minuta 46 that will come from the same rules.

[^6]Per Tabulam Sexagenariarn fic inftitues divifionem. Prımò. TotumDividendum cum fuis fpecieb fcribe loco fuperiori, eique \{ubjice, incipiendoà finiftra,totum Diviforem cum fuis etiam Ipecieb, itaut vel finiftima figura diviforis fubjiciatur finittimæ Dividendi, li minor fir Divifor quàm membrum Dividendi cui refpondere debet; vel proximè fequenti, fifirmajor. Deinde poft utrumque numerum ad dexteram forpaa femilunulam, cui Quotus infctibatur, prout in Divifione ordinaria fit, \& proucin exemplo faCtuin vides in A \& B.
Secundo.Siutraq; primalpecies,tamDiviforis, quàm Dividendi, excedat triginta, aditabulam triangularem, \& quære Diviloré inlatere fupremo tranfverfali $A B$, Dividendŭ verò in fubjecta columna perpendiculari; vel fiDividendusin diCta columna præcisè nố reperitur, quare numerum proximè minorem; \& abhoc numero perge ad latus dextrum $B G$ trianguli,inveniefque Q uotum poft lunulam feribendum. Si verò alterutra, five Dividendi, five Diviforis, prima feecies minor eft tricenarie,adi tabulam quadrangularem, \& quære Diviforem in latere finiftro DE dictre tabulx, Diviforem verò in columna tranfverfali, vel ipfo proximè minorem numerum, à quo numero fiafcendas rectà ad caput tabulx, invenies in ejus latere obliquo DF Quotum poft femilunulam fcribendum, ut vides in L factum.
(To even out page count the corresponding original sketch is added at the end of text)
With help of the Sexagesimal Table you will set up a division that way. First. Write the whole dividend on top with its orders, downwards set, beginning from the left, the whole divisor with his orders too, so that either the leftmost figure of the divisor is set below the leftmost (figure) of dividendus, if divisor is smaller than the corresponding part of dividend, or, if it is bigger, under the next following (figure).Next behind one of the two numbers to the right side form a small half moon ${ }^{22}$, in which the quotient will be written in the sequence of the division and like you see in A and B .

Second.If the first order ${ }^{23}$ of divisor or dividend exceeds thirty, go to the triangular table and look for the divisor on the horizontal side AB on top, and look for the dividend in the rectangular column below, if the dividend cannot be found exactly in the named column, look for the next smaller number; and from this number go to the right side BG in the triangle and you find a quotient that is written behind the left parenthesis. But if in dividendus or divisor the first order is smaller than thirty, go to the square table and look for divisor in the left side DE of the named table, (look for) divisor ${ }^{24}$ or the next smaller number in the horizontal row, from this number go up to top of table and you will find in this oblique side DF the quotient that is written behind the parenthesis as you see done in L.

[^7]Tertio.Quotuminventum multiplicain totum Diviforem, modo dicto in Articulo V.deMultiplicationeaftronomica, ut vides factum in C.

Quario.Productum exmultiplicatione collige in unam fummam, diftinctă ritè in fuas fpecies, ut vides inD: eamquéfummam fubtrahe à Dividendo, cuifubferiptuseft divifor, \& refiduum fcribe infrà,ut in fequenti exemplo vides in E.

Quintò. Refiduo infrà notato adjunge aliam fpeciem Dividendi, ut factum vides inF.Diviforeq; promoto, ut fieri folet in divifione ordinaria, \& ut vides factum inG,repete operationesomnes ut antè, \& ut factum vides in H , in I , in K , \& in M.
Sextò.Siplures fuperfunt fpeciesDividendi,repete eundem operandi modú , donec omnesabfumpferis.Si promoto Divifore, is major eft quă Dividendus cui fubfcriptus eft, pone cifram poft lunulam, \&\& irerum promoveDiviforé, operareque utantea, Si quid ex divifione refiduá fit, placeatque ulterius per cundem Diviforem dividere;tunc refiduo à dextris loco ulterioris fpeciei adjunge cifram femel, autiterum, prout libuerit, numetumque iftum ulterius partire modo antea dicto. Sic ad minima pervenire poteris.

Third. Multiply the quotient by the whole divisor, as told in section V. About Astronomical Multiplication, as you see done in C.

Fourth. Collect the product from multiplication in one sum, parted as usual in its orders, as you see in D: this sum subtract from dividend, which holds the divisor below, the remainder write below as you see in the following example in E.

Fifth. This remainder written below combine with the other order ${ }^{25}$ in the dividend, as you see it done in F. Repeat all operations as before with the moved divisor how it is done in normal division and as you see it done in G, and as you see it done in H , in I , in K and in M .

Sixth. If more orders in the dividend are left, repeat this operation until you have removed all of them. If a moved divisor is bigger than that dividend it is written below, place a zero behind parenthesis and operate with the moved divisor like before. If something remains from division and it pleases going on to divide with the same divisor, then add to the remainder zero at the right in the next order once, or repeatedly, as you like, and part this number again and again in the way told before. Thus you will come to the least.

[^8]Sit dividédus \& divifor ut fupra. Collocaillos ut vides in $\mathrm{A} \& \mathrm{~B}$. Et quoniả prima dividendi fpecies, 16 , minor eft tricenario, quare diviforé, 42 , in latere DE trapezij,\& perge dexcrorfum in eadem columna; in qua quia non occurrunt 16,5 ; accipe proximè minorem numerum $15,24, \&$ afcendendo invenies 22 .Scribe ergo 22 proQuoto, ut vides in L.eumque multiplica in diviforem B ; invenies numeros C ;quos collige in fummam D, \& fubtraheab A, eritque refiduus numerusE. Hinc adde ultimam dividendi feciem, nimirum ' ${ }_{6}^{\prime \prime}$, \& habebis novum dividendum F, cui fubfcribes diviforem, ut vides factum in G . Et quia prima fpecies tam dividendi, quàm diviforis major eft tricenario, quare primam diviforis fpeciem,42,in fronte ABtrianguli, \& defcendendo invenies 32,12 , à quo numero perge detrorfum, \& in latere BC trianguli invenies 46 .Scribe hxe poftlunulam pro Quoto, ut vides in M:eundem multiplica in G , numeros H productos collige in fummam I, eamque fubtrahe abF, \& nihil remanebit. Erititaque Quotus,22,46,
Septımò. Peractâ divifione totâ, figna notis convenientibus fpecies Quoti ex divifione emergentis, obfervando fequentes Regulas.

Dividendus and divisor are as above. ${ }^{26}$ Set them as you see in A and B. And because the first order of dividendus, 16 , is smaller than thirty, search the divisor, 42 , on the side DE of trapez, go to the right in the same row, in which 16,5 don't occur, take the next smaller number 15,24 and going down you find 22. So write 22 for quotient as you see in L . This (number) multiply by divisor B, you will find numbers C, which you collect to sum D and subtract from A, will come remainder E. Here add the last order of dividend, it's 16 " and you will get the new dividend F , to which you write below the divisor, as you see done in G . And because first order of dividend and of divisor is bigger than thirty, look for the first order of divisor, 42, in front AB of triangle and going down you will find 32,12 from where you go to the right and you will find 46 in the side $B C$ of the triangle. Write it behind the parenthesis as quotient, as you see in M: this multiply with G, the produced numbers H collect in sum I, which you subtract from F and nothing will remain. So the quotient will be 22,46 .

Seventh. When the whole division is done, mark the orders of quotient with signs that follow from division, observing the following rules.

[^9]
Regula adfignandas species

Quoti.

PRimàCùm divifor\& dividendushabentnotas ejufdem fpeciei,\&quantitatis, proveniunt integra. Sic \bar{i} devidas gradus per gradus, Sexagenas primas per primas, Secundas per jecundas, ©゚c. Scrupula prima per primasecunda per fecunda, ©sc.emerguntgradus, quiintegrum conftituunt.
Secrenda. Cùm divifor \& dividendus habent notas ejufdè fpeciei, fed nota dividendi fuperat notā diviforis:fubtrahe minorem notam ex majori, eritque refiduum nota Quoti ejufdem fpecieiut antea. Sic /idividas crupula $36^{\prime \prime}$ per ${ }_{6}$ ", fiet Quotus 6^{\prime} : Sifexagenas 12 3as pers ${ }^{2}$ as, fiet Quotues 2^{12}.
Teris. Cùm divifores dividendus habentnotas ejuldem fpeciei, fed nota diviforis fuperat notam dividendi; fubtrahe fimiliter minorě ex majore, eritq; refiduum nota Quoti diverfe feciei quàm antea:nam ex ferupulis fiuntSexagen x, \&exSexagenis fcrupula, Sicfidividas forupula $1_{2}^{\prime \prime}$ per ${ }_{6}^{\prime \prime}$,

Rules to indicate orders of the Quotient.

First. If divisor and dividend have signs of the same range and quantity ${ }^{27}$ come integra. So if you divide gradus with gradus, sexagenae primae by primae, secundae by secundae and so on, scrupula prima by prima, secunda by secunda and so on, will come gradus, which become integra.

Second. If divisor and dividend have signs of same range, but the sign of dividend is bigger than the sign of divisor: subtract the smaller sign from the bigger one, the remaining sign of quotient will belong to the same range as before. So if you divide scrupula $36^{\prime \prime \prime}$ by 6 ", the quotient will be 6 ': if (you divide) sexagenae $12^{\text {3as }}$ by $5^{2 a s}$, the quotient will be $2^{1 æ 28}$.

Third. If divisor and dividend have signs of same range, but the sign of divisor is bigger than the sign of dividend; subtract in the same way the smaller from the bigger (one), the remaining sign of quotient will be in the opposite range than before: from scrupula come Sexagenae and from Sexagenae scrupula. So if you divide scrupula 12 " by 6 "',

[^10]firnt 2^{12} Sexagene: : ivero fexagenas 162 as per jexagenas 4 3as, fiunt forupula 4'.
Quarta.Cùm divifor \& dividendus habentnotas diverfe ipeciei, adde notas diviforis notis di-
 fub qua dividenduserat Sic fidividas 20 2as ${ }^{\text {exagage- }}$ nas $\frac{1}{4}$ frupula, emergunt $₹$ fexagena quinta: EJfidividas crupula ${ }_{6}^{6}{ }_{6}$ per 4 Sexagenas tertias,emergunt 4/crupulaquinta
Quinta. Cùm gradus dividuntur per fcrupula, proveniunt Sexagenx ejufdé fpeciei, cujus funt fcrupula diviforis.Soc fidividas 16° per 4^{\prime} forupula, babebis in Qnoto $4^{\text {nas }}$ exaragenas.

Sexta Cüm fcrupula per gradus dividuntur, proveniunt fcrupula ejus fpeciei, cujusef dividendus. Sic fidividas 6_{6}^{11} (crupula per 4°, babebis in Quoto $4^{\prime \prime}$ /crupula.

Septima. Cùm gradus fexagenas dividuntur, proveniunt in Quoto fcrupulaejusfpeciei, quam habet divifor. Sic divifis $1_{6}{ }^{\circ}$ per $4^{2 a s}$ /exagenas,erit Quotus 4 " crupula.

Oftava. Cùm Sexagenx per gradus dividuntur, proveniunt fexagenæ ejus fpeciei, cujus eft dividendus. Sic divifis 16 ais exagenis per 4 , eris Quotus $4^{2 x}$ fexagena.

Annotatio.

He E regula valent, cùm dividendus primuseft major divifore: fienim minor eft, producitur pecies in Quote uno locoinferior illa, quam Regula docent; foticee non gradus, fed fcrupula;non fcrupula,fed fecunda. Si tamen minorem dividendumreducas ad fequentem peciem minorem, v.g.gradusad fcrupala,frrupula ad fecunda, ©̌ c.valent Regula.
come $2^{1 \times}$ Sexagenae: in contrast sexagenae $16^{2 \text { as }}$ by sexagenae $4^{3 \text { as }}$ will come scrupula 4'.

Fourth. If divisor and dividend have signs of opposite range, add the signs of divisor and the signs of dividend, and the sum will be the sign of quotient in that range the dividend had. So if you divide $20^{2 a s}$ sexagenae (by) $4 " 1$ scrupula, will come 5 sexagenæ quintæ: and if you divide scrupula 16 " by 4 Sexagenae tertiae will come 4 scrupula quinta.

Fifth. If gradus are divided by scrupula, come Sexagenae with the same order scrupula of the divisor have. So if you divide 16° by 4^{\prime} scrupula, you will get in the quotient $4^{\text {1as }}$ sexagenae.

Sixth. If scrupula are divided by gradus come scrupula with the same order of dividend. So if you divide $16^{\prime \prime}$ scrupula by 4° you will get in quotient $4 "$ scrupula.

Seventh. If gradus are divided by sexagenae come in quotient scrupula with the same order the divisor has. So if you divide 16° by $4^{2 a s}$ sexagenae will come a quotient of $4^{\prime \prime}$ scrupula.

Eighth. If sexagenae are divided by gradus, will come sexagenae with the same order the dividend has. So if you divide $16^{2 \text { is }}$ sexagenae by 4°, will come a quotient of $4^{2 x}$ sexagenae.

Remark.

These rules are valid as long as the dividend is bigger than the divisor: if it is smaller, an order in the quotient comes that is one place lower than that the rules give; which means, not gradus but scrupula; not scrupula but secunda. But if you reduce the smaller dividend to the next smaller order, for example gradus to scrupula, scrupula to secunda, and so on, the rules apply. ${ }^{29}$

[^11]
Exemplum.

$$
2 .^{x} \quad 1 .^{x} 0
$$

Follows Tabula

Source: Gaspar Schott, Cursus Mathematicus (1661). Reproduction S. Weiss, 2011
Tabula Sexagenaria Vel Sexagesimorum scrupulorum. Inseratur lib. 2 par. 2 cap. 2 Artic. 5 pag. 45.

[^0]: 1 This notation for sexagesimal or astronomic numbers should not be mixed up with the same notation used for decimal fractions, called geometric numbers.
 $2 \mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$

[^1]: 3 In modern notation $(12 / 4) \times\left(60^{2} / 60^{-3}\right)$.

[^2]: 4 I inspected a digital copy of the $1^{\text {st }}$ ed. 1661 (European Cultural Heritage Online ECHO) and an original book from edition 1674. Both contain the named Tabula Sexagenaria.
 5 URL http://processing.org

[^3]: 6 To bundle place values to the next higher place if they exceed 59.
 7 Species is an often used word with different meanings. Mostly the order of a place itself within a number where a sexagesimal figure stands is meant. In those cases I use the word "order" for translation, because from a modern point of view we can regard species with this meaning to be an exponent of base 60. In the example for division however species denotes the figure on the place with specified order. In some rules to denote sexagesimal figures with signs, species is set for ranges of signs.

 8 For example if partial product $=125$, then $125 / 60=$ quotient $2+$ remainder 5.
 9 This text is a good example for Schott's sketchy and sometimes superficial way of teaching, that tends to become wrong. The rule is misinterpretative in formulation and in my opinion incomplete. He really wants to express the term $60^{m} \times 60^{n}=60^{m+n}$ with positive and negative exponents (see fig. 1). His way to calculate with ordering signs is discussed more detailed at sexagesimal division.

[^4]: 10 In this example a multi-digit number is multiplied by a single-digit number in written form.
 11 Wrong result, $38 \times 50=1900$. He continues his calculation the right way.
 12 In the written display 40 is erroneously printed as 4°.
 13 Wrong value, should read 38.
 14 He refers to section III, De Additione astronomica, about astronomical addition.
 15 First the numbers are multiplied and the partial products are written down and when finished the orders are defined and noted. Here Schott enumerates the orders of all partial products from right to left.
 16 Mathematicians distinguished between astronomical numbers for motion with multiples and parts of degrees, based on proportion 60 and numbers for time that hold years, months, days, hours, minutes, seconds and their parts (see Articulus I, p. 43).
 17 Schott passes over a multiplication with two multi-digit factors, which is in consideration of the orders of all partial products more difficult to perform. A century before authors give such an example. Systematically they arrange figures in columns for orders and thus ease calculation. See Stifel Arithmetica Integra, fol. 67r or Theodoricus Compendium.

[^5]: 18 An example for what he says: $31^{\circ} \times 46=1426^{\circ} ; 1426^{\circ} / 60=23^{\text {ae }} \mathrm{R} 46^{\circ}$ with calculation or, much more easier, $31 \times 46=23.46$ from the table.
 19 Schott refers to an intermediate division by 60 if the partial product exceeds 59 , not necessary by use of the table, see preceding footnote.

 20 In the same column on top of the page.

[^6]: 21 Wrong value, should read 16 like in written example.

[^7]: 22 A nice replacement for left parenthesis.
 23 Precisely the figure in the first order.
 24 Rectified dividend

[^8]: 25 Orders that are not treated yet, 16 "' in his example.

[^9]: 26 Without any connection an example for division with given numbers follows.

[^10]: 27 Here species is used in the sense of "range" and quantitas is the value of a sign. Schott distinguishes the three ranges sexagenae, gradus, scrupula, from modern view negative or positive or zero exponents.
 28 The superscript signs "as" and "æ" are equal, but they follow Latin grammar: sexagenae in nominative case and sexagenas in accusative case.
 Furthermore Scupula tertia are bigger than scrupula secunda and sexagenae tertiae are bigger than sexagenae secundae. From view of powers, exponents have no sign in sense of positive or negative, their value is absolute. Schott uses eight rules to avoid zero or negative differences between signs.

[^11]: 29 The named case is already covered in the rules to perform a written division. What he really wants to say is avoid a numerical quotient smaller than 1.
 Background of this rule is the term
 $\left(\mathrm{a} \times 60^{\mathrm{m}}\right) /\left(\mathrm{b} \times 60^{\mathrm{n}}\right)=\mathrm{a} / \mathrm{b} \times 60^{\mathrm{m}-\mathrm{n}}$ for $\mathrm{a}>\mathrm{b}$ and $=(60 \mathrm{a} / \mathrm{b}) \times 60^{\mathrm{m}-\mathrm{n}-1}$ for $\mathrm{a}<\mathrm{b}$.

